INFORMAÇÃO MALTRATADA
Marie Curie e o Ano Internacional da Química
Por Felipe A. P. L. Costa
Observatório da Imprensa, 27/09/2011, edição 661
Há exatos cem anos, uma obstinada cientista, mãe de duas filhas e já então viúva, era agraciada com o Nobel de Química. Um feito e tanto, sem dúvida, mas que, por incrível que pareça, não era um feito inédito: oito anos antes, a mesma cientista havia sido agraciada com o Nobel de Física. O nome dela? Marie Sklodowska-Curie (1867-1934) – nascida Maria Salomea Sklodowska, em Varsóvia (Polônia) –, mais conhecida mundo afora como Marie Curie.
Aproveitando o centenário do Nobel de Química dado a Marie Curie, e como parte de uma programação comemorativa mais extensa, envolvendo outras disciplinas científicas, a Organização das Nações Unidas (ONU) proclamou 2011 o Ano Internacional da Química (ver AIQ 2011ou IYC 2011). O lema da campanha, promovida pela Organização das Nações Unidas para a Educação, a Ciência e a Cultura (Unesco, na sigla em inglês) em parceria com a União Internacional de Química Pura e Aplicada (Iupac, na sigla em inglês), é “Química: a nossa vida, o nosso futuro”.
Até o momento, porém, a mídia brasileira não parece muito preocupada com o assunto. Afinal, já estamos praticamente no último trimestre do ano e, com raríssimas exceções, até agora nada... Entre as exceções, cabe aqui registrar a cobertura que a revista Ciência Hoje vem fazendo, publicando desde o início do ano artigos especiais em alusão ao AIQ 2011 (ver aqui), a exemplo do que fez em 2009, quando publicou vários artigos em alusão ao Ano Internacional da Astronomia.
“O aterrorizante grau de ignorância científica”
Quando a química aparece na mídia, quase sempre é retratada como se fosse uma cartola de mágico, cheia de truques e curiosidades, ou, na melhor das hipóteses, como uma ciência exclusivamente aplicada – ver, por exemplo, a matéria “Evolução da química levou à criação de aromas sofisticados”, de Sabine Righetti, publicada naFolha de S.Paulo (22/8/2011). Uma explicação para isso é que a química, com perdão do trocadilho, é relativamente impalatável para o grande público, “vendendo” relativamente pouco. Para contornar o problema, editores e repórteres costumam então abusar na maquiagem – o que, em geral, produz matérias distorcidas ou mesmo aberrações.
Além de maltratada pelos meios de comunicação, a química talvez seja, em termos curriculares, a mais marginalizada das ciências naturais. Assim, ao final do ensino médio, o assunto torna-se para a grande maioria dos estudantes cada vez mais distante. Sem uma familiaridade mínima, não é de estranhar que a opinião pública (nacional e internacional) reproduza tantos erros e mal-entendidos grosseiros envolvendo a disciplina. Eis um comentário a respeito desse estado de coisas:
“Havia dois jovens no elevador da estação de rádio quando entrei, depois de terminar uma gravação ao vivo. ‘Você é alguém?’, deixou escapar um deles. Enquanto eu ponderava uma resposta apropriada para essa questão profundamente filosófica, seu amigo disparou: ‘Sim, ele é o cara que fala de química no rádio.’ Essa era a munição de que o filósofo precisava. ‘Ó, não, estamos presos no elevador com um cientista’, brincou, antes de oferecer voluntariamente a informação de que na escola havia tirado dois em química, e ‘mesmo assim colando’.
“Eu já ouvira isso antes. Depois de dar muitas conferências, tenho sido abordado por pessoas que, de alguma maneira, sentem necessidade de desafogar suas mágoas e dizer-me, com alguma espécie de orgulho perverso, que dormiram durante as aulas de ciências do ensino médio, ou que química fora o único curso em que fracassaram. Tais comentários são emocionalmente dolorosos para qualquer um que ensine ciências. Mas, pior que isso, eles deixam implícito que o ensino de ciências pobre e sem imaginação pode ser parcialmente responsável pelo aterrorizante grau de ignorância científica que permeia nossa sociedade.
“O analfabetismo científico não é assunto para brincadeiras. Certamente nos divertimos com respostas bobas de provas, sugerindo que Benjamin Franklin produziu eletricidade esfregando dois gatos um contra o outro, ou que podemos identificar o monóxido de carbono porque ele tem um “cheiro inodoro”. Mas a falta de familiaridade com os princípios científicos básicos pode causar medos infundados e abrir a porta para charlatães.
“Recentemente, ouvi de um cavalheiro que estava preocupado porque, se dormisse com um cobertor elétrico, ficaria ‘cheio de radioatividade’; de pessoas que haviam investido em uma empresa costa-riquenha que descobriu um processo para transformar a areia vulcânica da praia em ouro; e de uma senhora que se preocupava porque o dióxido de silício do seu adoçante artificial lhe causaria câncer de mama […].
“O absurdo químico chegou até a sala dos tribunais. No julgamento de uma briga de gangues na Califórnia [EUA], o promotor descreveu ‘uma situação muito parecida a quando o nitrogênio se encontra com a glicerina: era certo que ia haver uma explosão de violência’. Ele provavelmente baseava a afirmativa em alguma vaga noção de que a nitroglicerina é um potente explosivo, mas essa substância não é feita combinando nitrogênio com glicerina. [...]
“Mais terrível ainda é a história do jovem Nathan Zohner, que ganhou o prêmio da Grande Feira de Ciências de Idaho [EUA]: ele fez com que 43 entre 50 visitantes assinassem uma petição para banir o monóxido de di-hidrogênio ‘porque pode ser fatal se inalado, é um componente principal da chuva ácida e pode ser encontrado em tumores de pacientes terminais de câncer’. [Para detalhes (em inglês) sobre esse caso, ver ‘Dihydrogen monoxide hoax’, na Wikipedia.] Qual é essa horrível substância química? Água, claro (H2O).” [Joe Schwarcz, Barbies, bambolês e bolas de bilhar, p. 18-20 (Jorge Zahar, 2009)]
Átomos radioativos e isótopos
No que segue, vamos nos debruçar um pouco sobre a vida e obra de Marie Curie, a cientista que cunhou o termo “radioatividade” e que foi, ao mesmo tempo, pioneira nessa área de pesquisa e vítima involuntária de sua própria rotina de trabalho.
A radioatividade é a emissão espontânea de partículas e/ou radiação por parte de núcleos atômicos instáveis, dando origem a outros núcleos, que podem ser eles próprios instáveis ou estáveis. Ao contrário do que alguns imaginam, nem todos os elementos químicos são radioativos.
De onde vem a radiação? A fonte última da energia emitida pelos átomos radioativos é o núcleo. Átomos de um mesmo elemento químico têm, por definição, o mesmo número atômico (que é igual ao número de prótons presentes no núcleo). Átomos de um mesmo elemento têm, portanto, o mesmo número atômico, mas podem ter ou não a mesma massa atômica (que é soma de prótons e nêutrons presentes no núcleo), quando são então referidos como isótopos.
A abundância relativa dos isótopos de um mesmo elemento é bastante desigual. Por exemplo, o carbono-12 (cujo núcleo possui seis prótons e seis nêutrons) é o isótopo de carbono mais comum encontrado na Terra, correspondendo a mais de 98% de todos os isótopos desse elemento – existem ainda o carbono-13 (seis prótons e sete nêutrons) e o carbono-14 (seis prótons e oito nêutrons), entre outros. Algo semelhante ocorre com o urânio, cujo isótopo mais abundante é o urânio-238 (92 prótons e 146 nêutrons), que corresponde a mais de 99% dos isótopos desse elemento – há ainda o urânio-235 (92 prótons e 143 nêutrons) e alguns outros, bem mais raros.
Os raios Becquerel e os Curie
Muitos isótopos são instáveis e, por isso mesmo, mudam espontaneamente para uma configuração energeticamente mais baixa e estável. Nesse processo, chamado de desintegração nuclear (ou decaimento radioativo), isótopos instáveis liberam energia (radioatividade) e partículas fundamentais (nêutrons, prótons ou elétrons), sendo então referidos como radioisótopos. Isótopos estáveis não são radioativos – isto é, não sofrem decaimento adicional e, portanto, não emitem radiação.
Em 1896, o físico francês Antoine-Henri Becquerel (1852-1908) relatou em artigo que uma amostra de material contendo urânio (um minério de óxido de urânio chamado pechblenda) era capaz de liberar energia (radiação) espontaneamente. Os raios Becquerel, como chegaram a ser chamados, atravessam sem dificuldade uma série de objetos opacos à luz. A descoberta chamou a atenção da física Marie Curie, que na época já vivia em Paris, onde havia conhecido e se casado com o físico francês Pierre Curie (1859-1906).
Marie e Pierre Curie passaram a se dedicar ao estudo de materiais radioativos. Após um minucioso e demorado trabalho de análise química, o casal – que, ao lado de Becquerel, foi laureado com o Nobel de Física, em 1903 – conseguiu isolar e identificar dois novos elementos: o polônio (nome dado em homenagem à Polônia, terra natal dela) e o rádio (cujo comportamento inspirou a expressão “radioatividade”), ambos altamente radioativos e com os quais eles passariam a lidar quase diariamente. Anos depois, em uma decisão que hoje seria vista como “escabrosa”, Marie Curie deliberadamente abriu mão do direito de patentear o processo de isolamento do rádio. A razão para isso? Simples: facilitar o acesso e as pesquisas com o novo elemento.
Filha e genro agraciados com o Nobel de Química
Pierre Curie morreu precoce e repentinamente, em 1906, após ter sido atropelado por uma carroça em uma rua de Paris. Um congresso internacional de radiologia, realizado na Bélgica, em 1910, homenageou sua memória, dando o nome de curie à unidade de medida da radioatividade. Marie Curie continuou suas pesquisas com materiais radioativos, tendo recebido, em 1911, como foi dito antes, um segundo Nobel, este de Química, tornando-se assim a primeira pessoa a ser duplamente laureada. Tal distinção ocorreu até hoje com outros três cientistas: o químico estadunidense Linus Pauling (1901-1994), laureado com o Nobel de Química (1954) e o da Paz (1962); o engenheiro eletricista estadunidense John Bardeen (1908-1991), laureado duas vezes (1956 e 1972) com o Nobel de Física; e o bioquímico inglês Frederick Sanger (1918-), laureado duas vezes (1958 e 1980) com o Nobel de Química.
Após tantos anos manipulando material radioativo sem as devidas precauções – além da manipulação direta, ela carregava amostras nos bolsos do jaleco, em uma época na qual os efeitos biológicos da radiação ainda eram desconhecidos –, Marie Curie passou a conviver com sérios problemas de saúde, vindo a desenvolver um tipo de câncer (leucemia). Quando faleceu, no entanto, em 1934, as implicações e as aplicações biológicas dos átomos radioativos já estavam sendo avidamente estudadas. Ela própria esteve profundamente envolvida com o assunto desde antes da I Guerra Mundial (1914-1919). Em 1935, sua filha mais velha, Irène Joliot-Curie (1897-1956), e o esposo, o físico francês Frédéric Joliot-Curie (1900-1958), seriam agraciados com o Nobel de Química, mais uma vez em razão de estudos envolvendo a radioatividade.
***
[Felipe A. P. L. Costa é biólogo e autor de Ecologia, evolução & o valor das pequenas coisas (2003)]
Nenhum comentário:
Postar um comentário
Comentários são sempre bem-vindos, desde que se refiram ao objeto mesmo da postagem, de preferência identificados. Propagandas ou mensagens agressivas serão sumariamente eliminadas. Outras questões podem ser encaminhadas através de meu site (www.pralmeida.org). Formule seus comentários em linguagem concisa, objetiva, em um Português aceitável para os padrões da língua coloquial.
A confirmação manual dos comentários é necessária, tendo em vista o grande número de junks e spams recebidos.