O que é este blog?

Este blog trata basicamente de ideias, se possível inteligentes, para pessoas inteligentes. Ele também se ocupa de ideias aplicadas à política, em especial à política econômica. Ele constitui uma tentativa de manter um pensamento crítico e independente sobre livros, sobre questões culturais em geral, focando numa discussão bem informada sobre temas de relações internacionais e de política externa do Brasil. Para meus livros e ensaios ver o website: www.pralmeida.org. Para a maior parte de meus textos, ver minha página na plataforma Academia.edu, link: https://itamaraty.academia.edu/PauloRobertodeAlmeida.

Mostrando postagens com marcador Darwin. Mostrar todas as postagens
Mostrando postagens com marcador Darwin. Mostrar todas as postagens

quinta-feira, 21 de maio de 2020

O primeiro artigo de Stephen Jay Gould na revista do Natural History Museum (1974)

Size and Shape

Picks from the Past: 
American Museum Natural History, January 1974

The immutable laws of design set limits on all organisms.


giraffe sjg
S.J.G.'s first “This View of Life” column
Who could believe an ant in theory? 
A giraffe in blueprint? 
Ten thousand doctors of what’s possible 
Could reason half the jungle out of being.
Poet John Ciardi’s lines reflect a belief that the exuberant diversity of life will forever frustrate man’s arrogant claims to omniscience. Yet, however much we celebrate diversity and revel in the peculiarities of animals, we must also acknowledge a striking “lawfulness” in the basic design of organisms. This regularity is most strongly evident in the correlation of size and shape.
Animals are physical objects. They are shaped to their advantage by natural selection. Consequently, they must assume forms best adapted to their size. The relative strength of such forces as gravity varies with size in a regular way, and animals respond by systematically altering their shapes.
The geometry of space itself is the major reason for correlations between size and shape. Simply by growing larger, an object that keeps the same shape will suffer a continual decrease in relative surface area. The decrease occurs because volume increases as the cube of length (length x length x length), while surface increases only as the square (length x length): in other words, volume grows more rapidly than surface.
Why is this important to animals? Many functions that depend upon surface must serve the entire volume of the body. Digested food passes to the body through surfaces; oxygen is absorbed through surfaces in respiration; the strength of a leg bone depends upon the area of its cross section, but the legs must hold up a body increasing in weight by the cube of its length. Galileo first recognized this principle in his “Discorsi” of 1638, the masterpiece he wrote while under house arrest by the Inquisition. He argued that the bone of a large animal must thicken disproportionately to provide the same relative strength as the slender bone of a small creature.
One solution to decreasing surface has been particularly important in the progressive evolution of large and complex organisms: the development of internal organs. The lung is, essentially, a richly convoluted bag of surface area for the exchange of gases; the circulatory system distributes material to an internal space that cannot be reached by direct diffusion from the external surface of large organisms; the villi of our small intestine increase the surface area available for absorption of food (small mammals neither have nor need them).
Some simpler animals have never evolved internal organs; if they become large, they must alter their entire shape in ways so drastic that plasticity for further evolutionary change is sacrificed to extreme specialization. Thus, a tapeworm may be 20 feet long, but its thickness cannot exceed a  fraction of an inch because food and oxygen must penetrate directly from the external surface to all parts of the body.
Other animals are constrained to remain small. Insects breathe through invaginations of the external surface. Since these invaginations must be more numerous and convoluted in larger bodies, they impose a size limit upon insect design: at the size of even a small mammal, an insect would be “all invagination” and have no room for internal parts.
We are prisoners of the perceptions of our size, and rarely recognize how different the world must appear to small animals. Since our relative surface area is so small at our large size, we are ruled by gravitational forces acting upon our weight. But gravity is negligible to very small animals with high surface to volume ratios; they live in a world dominated by surface forces and judge the pleasures and dangers of their surroundings in ways foreign to our experience.
An insect performs no miracle in walking up a wall or upon the surface of a pond; the small gravitational force pulling it down or under is easily counteracted by surface adhesion. Throw an insect off the roof and it floats gently down as frictional forces acting upon its surface overcome the weak influence of gravity.
The relative weakness of gravitational forces also permits a mode of growth that large animals could not maintain. Insects have an external skeleton and can only grow by discarding it and secreting a new one to accommodate the enlarged body. For a period between shedding and regrowth, the body must remain soft. A large mammal without any supporting structures would collapse to a formless mass under the influence of gravitational forces; a small insect can maintain its cohesion (related lobsters and crabs can grow much larger because they pass their “soft” stage in the nearly weightless buoyancy of water). We have here another reason for the small size of insects.
The creators of horror and science-fiction movies seem to have no inkling of the relationship between size and shape. These “expanders of the possible” cannot break free from the prejudices of their perceptions. The small people of Dr. CyclopsThe Bride of FrankensteinThe Incredible Shrinking Man, and Fantastic Voyage behave just like their counterparts of normal dimensions. They fall off cliffs or down stairs with resounding thuds; wield weapons and swim with olympic agility. The large insects of films too numerous to name continue to walk up walls or fly even at dinosaurian dimensions.
Página 2 de 2
Picks from the Past: January 1974

The immutable laws of design set limits on all organisms.


When the kindly entomologist of Them discovered that the giant queen ants had left for their nuptial flight, he quickly calculated this simple ratio: a normal ant is a fraction of an inch long and can fly hundreds of feet; these ants are many feet long and must be able to fly as much as 1,000 miles. Why, they could be as far away as Los Angeles! (Where, indeed, they were, lurking in the sewers.) But the ability to fly depends upon the surface area of the wings, while the weight that must be borne aloft increases as the cube of length. We may be sure that even if the giant ants had somehow circumvented the problems of breathing and growth by molting, their chances of getting off the ground would have been far worse than that of the proverbial snowball in hell.
Other essential features of organisms change even more rapidly with increasing size than the ratio of surface to volume. Kinetic energy, for example, increases as length raised to the fifth power. If a child half your height falls unsupported to the ground, its head will hit with not half, but only 1/32 the energy of yours in a similar fall. A child is protected more by its size than by a “soft” head. In return, we are protected from the physical force of its tantrums, for the child can strike with, not half, but only 1/32 of the energy we can muster. I have long had a special sympathy for the poor dwarfs who suffer under the whip of cruel Dr. Alberich in Wagner’s “Das Rheingold.” At their diminutive size, they haven’t a chance of extracting, with mining picks, the precious minerals that Alberich demands, despite the industrious and incessant leitmotif of their futile attempt.
This simple principle of differential scaling with increasing size may well be the most important determinant of organic shape. J.B.S. Haldane once wrote that “comparative anatomy is largely the story of the struggle to increase surface in proportion to volume.” Yet its generality extends beyond life, for the geometry of space constrains ships, buildings, and machines, as well as animals.
The great range of designs among medieval churches can be attributed partly to size. The twelfth-century parish church of Little Tey, Essex, England, was only 57 feet long and had a simple floor plan (lower right corner). The floor plan of Norwich Cathedral, also twelfth century, shows adaptations—transept, chapels—required for the 450-foot-long building. The need for light and support dictated complex cathedral layouts.
Medieval churches present a good testing ground for the effects of size and shape, for they were built in an enormous range of sizes before the invention of steel girders, internal lighting, and air conditioning permitted modern architects to challenge the laws of size. The tiny, twelfth-century parish church of Little Tey, Essex, England, is a broad, simple rectangular building with a semicircular apse. Light reaches the interior through windows in the outer walls. If we were to build a cathedral simply by enlarging this design, then the periphery of the outer walls and windows would increase as length, while the area that light must reach would increase as length times length. In other words, the size of the windows would increase far more slowly than the area that requires illumination. Candles have limitations; the inside of such a cathedral would have been darker than the deed of Judas. Medieval churches, like tapeworms, lack internal systems and must alter their shape to produce more external surface as they are made larger.
The large cathedral of Norwich, as it appeared in the twelfth century, had a much narrower rectangular nave; chapels have been added to the apse and a transept runs perpendicular to the main axis. All these “adaptations” increase the ratio of external wall and window to internal area. It is often stated that transepts were added to produce the form of a Latin cross. Theological motives may have dictated the position of such “outpouchings,” but the laws of size required their presence. Very few small churches have transepts.
I have plotted periphery versus the square root of area for floor plans of all postconquest Romanesque churches depicted in Clapham’s monograph of English ecclesiastical architecture. As we would predict, periphery increases more rapidly than the square root of area. Medieval architects had their rules of thumb, but they had, so far as we know, no explicit knowledge of the laws of size.
Like large churches, large organisms have very few options open to them. Above a certain size, large terrestrial organisms look basically alike—they have thick legs and relatively short, stout bodies. Large Romanesque churches are all relatively long and have abundant outpouchings. The invention of the flying buttress strengthened later Gothic buildings and freed more wall space for windows. Churches could then become relatively wider and simpler in outline (as in the Cathedral of Bourges).
The “invention” of internal organs helped animals retain the highly successful shape of a simple exterior enclosing a large internal volume; and the invention of internal lighting and structural steel has helped modern architects design large buildings with simple exteriors. The limits are expanded, but the laws still operate. No large Gothic church is higher than it is long, no large animal has a sagging middle like a dachshund.
I once overheard a children’s conversation in a New York playground. Two young girls were discussing the size of dogs. One asked: “Can a dog be as large as an elephant?” Her friend responded: “No, if it were as big as an elephant, it would look like an elephant.” I wonder if she realized how truly she spoke.

Remembering Stephen Jay Gould - American Museum of Natural History

Meu tributo ao grande biólogo evolucionista, precocemente desaparecido, de quem eu li quase tudo, e até fiz um grande artigo de resenha – antes de suas últimas obras – para homenagear o cientista que muito ensinou, que figura em meu próximo livro, como vou informar oportunamente. Eis ao artigo: 
Um Darwinista Heterodoxo: Stephen Jay Gould e a Sobrevivência dos (Cientistas) mais Aptos”, Genebra, 19 abril 1988, 25 p. Ensaio sobre a obra do naturalista norte-americano, com destaque para a teoria dos “equilíbrios pontuados” e suas conexões com o processo histórico. Revisto em 12 junho 1988, com base em comentários e observações de consultores encaminhados pelo Comitê Editorial da revista mensal da SBPC. Publicado em Ciência e Cultura (São Paulo: vol. 40, n. 12, dezembro de 1988, p. 1154-1163). Disponível neste link: 
https://www.academia.edu/5804779/159_Um_Darwinista_Heterodoxo_Stephen_Jay_Gould_e_a_Sobreviv%C3%AAncia_dos_Cientistas_mais_Aptos_1988_?sm=a
Paulo Roberto de Almeida

Remembering Stephen Jay Gould

by American Museum of Natural History (New York) 
on 
https://www.amnh.org/explore/news-blogs/news-posts/remembering-stephen-jay-gould

The Museum mourns the death of Stephen Jay Gould, among the most influential paleontologists and evolutionary biologists of the late 20th and early 21st centuries.
Dr. Gould's long-standing association with the Museum began as a doctoral student in the joint American Museum-Columbia University program working under the advisement of the eminent paleontologist and Museum Curator Norman Newell. As a student he also began a lifelong collaboration with Niles Eldredge, Curator Emeritus in the Division of Paleontology, on the theory of punctuated equilibrium.
The theory argues that evolutionary history is a pattern of rapid shifts followed by stasis rather than a slow and steady process of change. His association with the Museum continued with his regular contributions to Natural History magazine between 1974 and 2001, resulting in over 300 essays, many of which were collected in books such as Ever Since Darwin and Bully for Brontosaurus. He was also named the Frederick P. Rose Honorary Curator in the Museum's Division of Paleontology.
Gould began teaching at Harvard University in 1967 where he spent his entire career. At Harvard he held the titles Alexander Agassiz Professor of Zoology, Curator of Invertebrate Paleontology in the Museum of Comparative Zoology, and Professor of Geology. He was also Vincent Astor Visiting Research Professor of Biology at New York University. His honors included the prestigious Schuchert Award for excellence in paleontological research by a scientist under 40, the MacArthur Foundation "Genius" Fellowship, and "Scientist of the Year" by Discover magazine for the theory of punctuated equilibrium that he co-authored with Niles Eldredge. Gould was also a frequent contributor to Discover magazine.
He served as the President of the Paleontological Society and President of the American Association for the Advancement of Science. Gould won the National Magazine Award for Essays and Criticism in 1980 and in 1981 received both the American Book Award for The Panda's Thumb and the National Book Critic's Circle award for The Mismeasure of Man. His other books include The Flamingo's Smile, Hen's Teeth and Horse's Toes, An Urchin in the Storm, and Wonderful Life: The Burgess Shale and the Nature of History and his recently published comprehensive volume The Structure of Evolutionary Theory.
Gould regarded himself primarily as an evolutionary biologist, where his queries explored subjects from fossils to growth and development, speciation, extinction, adaptation as well as many more facets of the field. As a writer of science, philosophy, and history his interests embraced a great range of issues pertinent to both science and society. He wrote with passion, facility and clarity about such topics as racial stereotyping, the human genome, health and longevity, evolution and creationism, art, poetry, music, and baseball.
While a highly influential scientist in the areas of his specialty, he also made, through his writing and speaking, an unparalleled connection to the public concerning many aspects of science and its impact on humanity.
In Dr. Gould's memory, we present three essays from Natural History magazine:
This View of Life: Size and Shape
The introductory essay in Stephen Jay Gould's column "This View of Life," from the January 1974 issue of Natural History magazine.
This View of Life: The Creation Myths of Cooperstown
Or, why the Cardiff Giants are an unbeatable and appropriately named team.
This View of Life: I Have Landed
In the final essay of this twenty-seven-year series, the author reflects on continuity—from family history to the branching lineage of terrestrial life.

domingo, 30 de setembro de 2018

A tragedia dos comuns, na obra de Elinor Ostrom - David S. Wilson (Evonomics)

The Tragedy of the Commons: How Elinor Ostrom Solved One of Life’s Greatest Dilemmas

The design principles for solving the tragedy of the commons can be applied to all groups

Economics, September 29, 2018

As an evolutionary biologist who received my PhD in 1975, I grew up with Garrett Hardin’s essay “The Tragedy of the Commons,” published in Science magazine in 1968. His parable of villagers adding too many cows to their common pasture captured the essence of the problem that my thesis research was designed to solve. The farmer who added an extra cow gained an advantage over other farmers in his village but it also led to an overgrazed pasture. The biological world is full of similar examples in which individuals who behave for the good of their groups lose out in the struggle for existence with more self-serving individuals, resulting in overexploited resources and other tragedies of non-cooperation.
Is the so-called tragedy of the commons ever averted in the biological world and might this possibility provide solutions for our own species? One plausible scenario is natural selection at the level of groups. A selfish farmer might have an advantage over other farmers in his village, but a village that somehow solved the tragedy of the commons would have a decisive advantage over other villages. Most species are subdivided into local populations at various scales, just as humans are subdivided into villages, cities and nations. If natural selection between groups (favoring cooperation) can successfully oppose natural selection within groups (favoring non-cooperation), then the tragedy of the commons can be averted for humans and non-human species alike.
Get Evonomics in your inbox

At the time that Hardin published his article and I was working on my thesis, this possibility had been considered and largely rejected. A book titled Adaptation and Natural Selection, written by evolutionary biologist George C. Williams and published in 1966, was on its way to becoming a modern classic. Williams described between-group selection as theoretically possible but almost invariably weak compared to within-group selection. By his account, attempts to explain evolutionary adaptations as “for the good of the group” reflected sloppy and wishful thinking. Hardin’s article reflected the same pessimism about avoiding the tragedy of the commons other than by top-down regulation. My interest in rethinking the plausibility of group selection placed me in a very small group of heretics (see Okasha 2006, Sober and Wilson 1998, Wilson and Wilson 2007, and Wilson 2015 for more on the controversy over group selection, which in my opinion has now been mostly resolved).
Evolutionary theory’s individualistic turn coincided with individualistic turns in other areas of thought. Economics in the postwar decades was dominated by rational choice theory, which used individual self-interest as a grand explanatory principle. The social sciences were dominated by a position known as methodological individualism, which treated all social phenomena as reducible to individual-level phenomena, as if groups were not legitimate units of analysis in their own right (Campbell 1990). And UK Prime Minister Margaret Thatcher became notorious for saying during a speech in 1987 that “there is no such thing as society; only individuals and families.” It was as if the entire culture had become individualistic and the formal scientific theories were obediently following suit.
Unbeknownst to me, another heretic named Elinor Ostrom was also challenging the received wisdom in her field of political science. Starting with her thesis research on how a group of stakeholders in southern California cobbled together a system for managing their water table, and culminating in her worldwide study of common-pool resource (CPR) groups, the message of her work was that groups are capable of avoiding the tragedy of the commons without requiring top-down regulation, at least if certain conditions are met (Ostrom 1990, 2010). She summarized the conditions in the form of eight core design principles: 1) Clearly defined boundaries; 2) Proportional equivalence between benefits and costs; 3) Collective choice arrangements; 4) Monitoring; 5) Graduated sanctions; 6) Fast and fair conflict resolution; 7) Local autonomy; 8) Appropriate relations with other tiers of rule-making authority (polycentric governance). This work was so groundbreaking that Ostrom was awarded the Nobel Prize in economics in 2009.
I first met Lin (as she preferred to be called) just a few months before she was awarded the prize, at a workshop held in Florence, Italy, titled “Do Institutions Evolve?” (recounted in Wilson 2011a). Similar events were taking place all over the world in 2009 to celebrate the 200th anniversary of Darwin’s birth and the 150th anniversary of On the Origin of Species. Multilevel selection theory, which envisions natural selection operating on a multi-tier hierarchy of units, had become more widely accepted by then, especially with respect to human cultural evolution, making me much in demand as a speaker. I had also cofounded a think tank called the Evolution Institute2 that formulates public policy from an evolutionary perspective, giving me a strong interest in the workshop topic. I had become somewhat familiar with Lin’s work but having the opportunity to talk with her at length had a transformative impact.
I quickly realized that Lin’s core design principle approach dovetailed with multilevel selection theory, which my fellow-heretics and I had worked so hard to revive. Her approach is especially pertinent to the concept of major evolutionary transitions, whereby members of groups become so cooperative that the group becomes a higher-level organism in its own right. This idea was first proposed by cell biologist Lynn Margulis (1970) to explain how nucleated cells evolved from symbiotic associations of bacteria. It was then generalized during the 1990s to explain other major transitions, such as the rise of the first bacterial cells, multicellular organisms, eusocial insect colonies and human evolution (Maynard Smith and Szathmary 1995, 1999).
Hunter-gatherer societies are famously egalitarian, not because everyone is nice, but because members of a group can collectively suppress bullying and other self-aggrandizing behaviors within their ranks – the defining criterion of a major evolutionary transition (Boehm 1993, 1999, 2011). With disruptive competition within groups held largely in check, succeeding as a group became the main selective force in human evolution. The entire package of traits regarded as distinctively human – including our ability to cooperate in groups of unrelated individuals, our ability to transmit learned information across generations, and our capacity for language and other forms of symbolic thought – can be regarded as forms of physical and mental teamwork made possible by a major evolutionary transition.
Lin’s design principles (DP) had “major evolutionary transition” written all over them. Clearly defined boundaries (DP1) meant that members knew they were part of a group and what the group was about (e.g., fisherman with access to a bay or farmers managing an irrigation system). Proportional equivalence of costs and benefits (DP2) meant that members had to earn their benefits and couldn’t just appropriate them. Collective choice arrangements (DP3) meant that group members had to agree upon decisions so nobody could be bossed around. Monitoring (DP4) and graduated sanctions (DP5) meant that disruptive self-serving behaviors could be detected and punished. Fast and fair conflict resolution (DP6) meant that the group would not be torn apart by internal conflicts of interest. Local autonomy (DP7) meant that the group had the elbow room to manage its own affairs. Appropriate relations with other tiers of rule making authority (DP8) meant that everything regulating the conduct of individuals within a given group also was needed to regulate conduct among groups in a multi group population.
The concordance between Lin’s core design principle approach and multilevel selection theory had three major implications. First, it placed the core design principle approach on a more general theoretical foundation. Lin’s “Institutional Analysis and Development (IAD)” framework emanated from political science and she was an early adopter of economic game theory, but her main case for the design principle approach was the empirical database that she compiled for common-pool resource groups around the world, as described in her most influential book Governing the Commons (Ostrom 1990). Multilevel selection theory showed how the core design principle approach follows from the evolutionary dynamics of cooperation in all species and from our own evolutionary history as a highly cooperative species.
Second, because of its theoretical generality, the core design principle approach is likely to apply to a much broader range of human groups than those attempting to manage common-pool resources (CPRs). Almost any group whose members must work together to achieve a common goal is vulnerable to self-serving behaviors and should benefit from the same principles. An analysis of business groups, churches, voluntary associations and urban neighborhoods should yield the same results as Lin’s analysis of CPR groups.
Third, the core design principle approach can provide a practical framework for improving the efficacy of groups in the real world. It should be possible for almost any kind of group to assess itself with respect to the design principles, address shortcomings, and function better as a result. This prospect was especially appealing to me as president of the Evolution Institute, since I was now actively engaged in formulating and implementing public policy from an evolutionary perspective.
Lin inspired me to begin several projects in parallel with each other. One was to collaborate with her and her postdoctoral associate Michael Cox to write an academic article, “Generalizing the Core Design Principle for the Efficacy of Groups” that established the three major implications listed above for an academic audience (Wilson, Ostrom and Cox 2013). Michael was the lead author of a 2010 article that evaluated the core design principle approach for the literature on CPR groups that had accumulated since Lin’s original analysis (Cox et al. 2010). Our article was published in a special issue of the Journal of Economic Behavior & Organizationtitled “Evolution as a General Theoretical Framework for Economics and Public Policy.” Both the article and the special issue should be consulted for more on the theoretical framework that underpins the design principle approach.
In addition, I started to use the design principle approach in projects that involved working with real-world groups in Binghamton, New York. One was a collaboration with the City of Binghamton and United Way of Broome County called “Design Your Own Park,” which used the opportunity to turn a neglected space into a neighborhood park. Neighborhood groups that formed to create a park would be coached in the core design principles and start to manage the affairs of their neighborhood in other respects. This project led to the creation of four neighborhood parks—and their groups—in our city (Wilson 2011b).
The second project was a collaboration with the Binghamton City School District to create a “school within a school” for at-risk youth called the Regents Academy (Wilson, Kaufmann, and Purdy 2011). This was our most ambitious and best documented project because we were able to employ the gold standard of scientific assessment, the randomized control trial, which randomly assigns participants into an experimental group and a control group to identify significant variables that might affect outcomes. To the best of its ability, the Regents Academy implemented the eight core design principles and two auxiliary design principles deemed to be important in a learning context (a relaxed and playful atmosphere and short-term rewards for long-term learning goals). Not only did the Regents Academy students vastly outperform the comparison group, but they even performed on a par with the average high school student on the state-mandated Regents exam (see Wilson, Kauffman and Purdy 2011 for details). This is a strong indication that the design principle approach can be generalized beyond CPR groups and can be used as a practical framework for improving the efficacy of groups in our everyday lives.
The third project was a collaboration with a number of religious congregations in Binghamton to reflect upon the core design principles in relation to their faith and social organization. These conversations did not lead to a formal effort to change practices but they were invaluable for exploring how the success of religious groups can be understood in terms of the design principles approach.
All of these projects were instructive and broadly confirmed the relevance of the core design principle approach for any group whose members must work together to achieve a common purpose. They also showed how the design principles can be sadly lacking in some groups, such as disadvantaged neighborhoods and public schools. It is important to remember that Ostrom was able to derive the core design principles for CPR groups because they varied in how well the design principles were implemented. Some did well without needing to be taught, while others did poorly and might benefit from some coaching. Based on my own projects, I became convinced that all groups are likely to face similar challenges in implementing the core design principles.
Get Evonomics in your inbox

Sadly, Lin died of cancer in June 2012. I was with her only a few months before at a workshop, “Rules as Genotypes in Cultural Evolution,” which we organized together and hosted at her Workshop in Political Theory and Policy Analysis, at Indiana University. She was simultaneously trying to care for her aging husband Vincent, satisfy the worldwide demand for speaking appearances, manage her projects and care for herself. I am grateful to be among the many who were touched by her and proud to contribute to her legacy by helping to generalize the core design principle approach and make it available to any group whose members must work together to achieve shared goals.*
2016 October 29

*PROSOCIAL is the first Internet platform that enables any group, anywhere in the world, to evaluate itself and increase its efficacy based on a fusion of the core design principle approach and evidence-based methods from the applied behavioral sciences.
References
Boehm, Christopher. 1993. “Egalitarian Society and Reverse Dominance Hierarchy.” Current Anthropology, 34:227 – 254.
———. 1999. Hierarchy in the Forest: Egalitarianism and the Evolution of Human Altruism. Cambridge, Mass: Harvard University Press.
———. 2011. Moral Origins: The Evolution of Virtue, Altruism, and Shame. New York: Basic Books.
Campbell, Donald T. 1990. “Levels of Organization, Downward Causation, and the Selection-Theory Approach to Evolutionary Epistemology.” In G. Greenberg & E. Tobach, editors, Theories of the Evolution of Knowing, 1 – 17. Hillsdale, NJ: Lawrence Erlbaum Associates.
Cox, M., G. Arnold & S. Villamayor-Tomas. 2010. “A Review of Design Principles for Community-based Natural Resource Management.” Ecology and Society. 15.
Hardin, Garrett. 1968. “The Tragedy of the Commons.” Science. 162:1243-1248.
Margulis, Lynn. 1970. Origin of Eukaryotic cells. New Haven: Yale University Press.
Maynard Smith, John, & E. Szathmary. 1995. The Major Transitions of Life. New York: W.H. Freeman.
———. 1999. The Origins of Life: From the Birth of Life to the Origin of Language. Oxford: Oxford University Press.
Okasha, Samir. 2006. Evolution and the Levels of Selection. Oxford, UK: Oxford University Press.
Ostrom, Elinor. 1990. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge, UK: Cambridge University Press.
———. 2010. “Polycentric Systems for Coping with Collective Action and Global Environmental Change.” Global Environmental Change. 20:550 – 557.
Sober, Elliot, & Wilson, D. S. 1998. Unto Others: The Evolution and Psychology of Unselfish Behavior. Cambridge, MA: Harvard University Press.
Williams, George. C. 1966. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton: Princeton University Press.
Wilson, D.S. 2011a. The Neighborhood Project: Using Evolution to Improve My CityOne Block at a Time. New York: Little, Brown.
———. 2011b. “The Design Your Own Park Competition: Empowering Neighborhoods and Restoring Outdoor Play on a Citywide Scale.” American Journal of Play. 3:538 – 551.
———. 2014. “Introducing PROSOCIAL: Using the Science of Cooperation to Improve the Efficacy of Your Group.” This View of Life.
———. 2015. Does Altruism Exist? Culture, Genes, and the Welfare of Others. New Haven: Yale University Press.
Wilson, D.S., Kauffman, R. A., & Purdy, M. S. 2011. “A Program for At-risk High School Students Informed by Evolutionary Science.” PLoS ONE, 6(11), e27826. doi:10.1371/journal.pone.0027826
Wilson, D.S., & Gowdy, J. M. 2013. “Evolution as a General Theoretical Framework for Economics and Public Policy.” Journal of Economic Behavior & Organization. 90:S3 – S10. doi:10.1016/j.jebo.2012.12.008
Wilson, D.S., Hayes, S. C., Biglan, A., & Embry, D. 2014. “Evolving the Future: Toward a Science of Intentional Change.” Behavioral and Brain Sciences. 37:395 – 460.
Wilson, D.S., E. Ostrom & M. Cox. 2013. “Generalizing the Design Principles for Improving the Efficacy of Groups.” Journal of Economic Behavior & Organization. 90:supplement, S21 – S32.
Wilson, D.S., & E.O. Wilson. 2007. “Rethinking the Theoretical Foundation of Sociobiology.” Quarterly Review of Biology. 82:327 – 348.

quinta-feira, 5 de dezembro de 2013

Um darwinista avant la lettre: Alfred Russell Wallace - Felipe Costa (Observatorio da Imprensa)


ALFRED RUSSEL WALLACE (1823-1913)

Um lugar na história

Por Felipe A. P. L. Costa 
Observatório da Imprensa, edição 775,  03/12/2013
O último dia 7 de novembro marcou os 100 anos de falecimento do renomado naturalista britânico Alfred Russel Wallace (1823-1913). Excetuando-se, contudo, alguns estudiosos e admiradores (ver, por exemplo, os sítios [em inglês] “The Alfred Russel Wallace Page” , “The Alfred Russel Wallace Website” e “Wallace Online” ), a efeméride não parece ter sido lembrada por muita gente. No caso da imprensa brasileira, mais especificamente, o único registro que consegui localizar nas últimas semanas foi a matéria “O resgate de Alfred Wallace”, de Henrique Kugler, publicada na Ciência Hoje On-line (27/11).
O mesmo tom de “resgate”, aliás, marca outras matérias publicadas anteriormente (e.g., “À sombra de Darwin, Alfred Russel Wallace recebe o devido reconhecimento” , de Ian Sample, publicada na Folha de S.Paulo28/9/2012).
De Usk ao Pará
Alfred Russel Wallace nasceu em 8/1/1823, no vilarejo de Llanbadoc, perto da cidade de Usk, no sudeste do atual País de Gales. Filho de Thomas Vere e Mary Ann [Greenell] Wallace, ele foi o penúltimo em uma família de nove filhos: Elizabeth Martha (1808-1808), William Greenell (1809-1845), Elizabeth Greenell (1810-1832), Frances (1812-1893), Mary Anne (1814-1822), Emma (1816-1822), John (1818-1895), ARW e Herbert Edward (1829-1851). Até os seis anos de idade, morou em Kensington Cottage (ver aqui), a casa onde nasceu e em cujos arredores teve os primeiros contatos com o mundo natural.
Em 1828, a família mudou para Hertford, poucos quilômetros ao norte de Londres. Foi lá que ele começou a ter uma educação formal; aos 14 anos, porém, abandonou a escola. Em 1837, foi morar com seu irmão John, em Londres. No mesmo ano, porém, mudou-se para Neath, no País de Gales, onde passou a trabalhar com seu irmão William. Em 1844, conheceu e se tornou amigo do naturalista inglês Henry Walter Bates (1825-1892). Isso foi em Leicester, cidade natal de Bates, onde Wallace havia arranjado emprego como professor em uma escola para crianças (ver aqui).
Assim como outros naturalistas da época, Wallace e Bates jamais receberam uma educação formal em ciência. Eram, no entanto, autodidatas apaixonados e estudiosos. Tinham vários interesses em comum e, inspirados nos relatos de outros naturalistas, decidiram conhecer a América do Sul. Vieram ao Brasil. A viagem durou um mês: saíram da Inglaterra em abril de 1848, chegando a Belém (na época, Pará) no fim de maio. Eis o relato de Wallace (WALLACE 1979, p. 17; grafia original):
“Foi na manhã do dia 26 de maio de 1848 que, depois de uma rápida viagem de 29 dias, tendo partido de Liverpool, ancoramos defronte à barra meridional do Amazonas e tivemos nossa primeira visão das terras sul-americanas. À tarde, veio um piloto a bordo, e, na manhã seguinte, navegamos rio acima com o vento de feição. Por cerca de 50 milhas não se podia distinguir se aquelas águas tranquilas e descoloridas seriam do rio ou do oceano, pois não se enxergava a margem setentrional, enquanto que a meridional se achava a uma distância de 10 ou 12 milhas. Ancoramos novamente no dia 28, pela madrugada, e quando o sol nasceu num céu sem nuvens, divisamos a cidade do Pará [Belém], rodeada pela densa floresta. Destacavam-se, acima de todas, as copas das palmeiras e bananeiras. Nossos olhos alegravam-se duplamente com a bela visão dessas plantas em seu estado natural, elas que tantas vezes admiramos nas estufas de Kew e de Chatsworth. As canoas que passavam com sua variegada tripulação composta de negros e índios, os urubus que pairavam acima de nossa cabeças ou que caminhavam preguiçosamente pela praia, os bandos de andorinhas que pousavam sobre os telhados das igrejas e casas, tudo servia para ocupar nossa atenção. Por fim, vieram os funcionários da Alfândega e tivemos permissão de descer em terra.”
Biogeografia: a regionalização da vida
Eles permaneceram os primeiros meses em um lugarejo próximo a Belém; em seguida, decidiram explorar outras regiões e então se separaram. Wallace viveu na Amazônia até julho de 1852, quando então voltou para a Inglaterra; Bates permaneceu por mais sete anos, só indo embora em junho de 1859. Lamentavelmente, porém, o material colecionado e despachado por Wallace nunca chegou a Londres, pois na viagem de volta o navio pegou fogo e a carga foi perdida. Os relatos de ambos sobre suas experiências em terras brasileiras foram posteriormente publicados em português (e.g., BATES 1979, WALLACE 1979).
A viagem ao Brasil não foi a única grande experiência na vida de Wallace. Ele se converteu em um coletor profissional e, como tal, colecionar espécimes (insetos, aves, mamíferos etc.) foi, durante anos, o seu ganha-pão. Foi o que o levou a permanecer oito anos (1854-1862) no sudeste asiático (incluindo Malásia Peninsular, Cingapura, Sumatra, Java, Bornéu, Timor, Celebes, Molucas; esteve ainda em Nova Guiné e diversas ilhas menores da região australiana), de onde enviou para a Inglaterra não apenas uma impressionante coleção de espécimes (ver aqui), mas também manuscritos importantes (ver adiante).
Além de sustento financeiro, o trabalho de campo lhe propiciou uma visão ampla e detalhada a respeito da distribuição geográfica dos seres vivos. Passou a escrever sobre o assunto, a ponto de ser considerado hoje um dos fundadores da moderna biogeografia, a disciplina científica que estuda a distribuição geográfica das espécies. Em 1876 (WALLACE 1876), propôs um sistema de classificação de acordo com o qual a fauna terrestre poderia ser arranjada em seis grandes regiões (cada uma, por sua vez, subdividida em domínios), a saber: região Australiana (incluindo Austrália, Nova Guiné e ilhas próximas); Etiópica (África, exceto a borda norte); Neártica (América do Norte, incluindo boa parte do México); Neotropical (América Central e do Sul); Oriental (sul e sudeste da Ásia, incluindo Índia, Tailândia, Vietnã etc.) e Paleártica (Europa, borda mediterrânea da África e o restante da Ásia). Com alguns ajustes, o modelo que ele propôs continua sendo adotado atualmente (ver COX 2001; para comentários em português, ver COX & MOORE 2009).
O manuscrito que veio da Indonésia
A despeito da importância de suas outras obras, Wallace é mais conhecido do grande público por conta de sua “parceria” com o naturalista inglês Charles Darwin (1809-1882). Como é sabido, em meados do século 19, os dois formularam, de modo independente, uma versão própria daquela que viria a ser chamada de teoria da evolução por seleção natural – talvez a mais influente de todas as teorias científicas. Embora naquela época a ideia de evolução biológica (i.e., a noção de que as linhagens de seres vivos mudam ao longo do tempo) já não fosse mais uma novidade, as teorias científicas a respeito do assunto ainda eram incipientes.
A primeira exposição pública das ideias de Darwin e Wallace se deu por meio de uma nota, intitulada “Sobre a tendência de espécies formarem variedades; e sobre a perpetuação de variedades e espécies por meios naturais de seleção”, que foi lida em uma reunião científica ocorrida na noite de 1/7/1858, em Londres. (Para consultar a versão integral [em inglês], clique aqui, indo em seguida para o item “Special Issue 9: Survival of the Fittest”.) Nenhum dos dois estava presente e, diferentemente do que imaginam alguns, o episódio não ocorreu na The Royal Society (a mais tradicional sociedade científica britânica, fundada em 1660), mas sim naThe Linnean Society of London (uma sociedade mais modesta, fundada em 1788). Menos de 30 sócios estavam presentes. A reunião foi demorada, mas não houve qualquer alvoroço.
A leitura às pressas de uma nota conjunta funcionou como uma espécie de saída diplomática de emergência, uma solução que alguns amigos íntimos de Darwin encontraram diante de uma situação inusitada e um tanto quanto embaraçosa. Se o arranjo de última hora não funcionasse, o veterano naturalista inglês corria o sério risco de ser acusado de plágio. Para entendermos melhor a situação, precisamos recuar um pouco e examinar o que aconteceu alguns anos antes.
Na segunda metade da década de 1830, após regressar de uma viagem de quase cinco anos ao redor do mundo (1831-1836), Darwin começou a trabalhar em um manuscrito, intitulado provisoriamente Seleção natural, no qual pretendia expor em detalhes uma ampla teoria da evolução (para detalhes e comentários adicionais, ver DESMOND & MOORE 1995). Em 1858, transcorridas mais de duas décadas, ele ainda estava trabalhando no manuscrito, ora acrescentando, ora retirando material. O empreendimento parecia não ter fim. Então, em 18 de junho, em meio a graves contratempos familiares, ele recebeu uma carta de Wallace, que estava naquele momento nas ilhas Molucas (Indonésia). Os dois já haviam se correspondido antes. Dessa vez, o jovem naturalista de 35 anos pedia a Darwin, então com quase 50 anos, que lesse o manuscrito que seguia em anexo e, caso encontrasse nele alguma relevância, o encaminhasse a terceiros.
Darwin ficou impressionado com o que leu: o manuscrito de Wallace continha uma descrição bastante familiar de suas próprias ideias a respeito do processo de evolução por seleção natural. (A rigor, cada um deles chegou a uma mesma conclusão trilhando caminhos algo distintos.) Além de abalado, a coincidência o deixou profundamente preocupado – afinal, alguém que lesse o manuscrito de Wallace e, em seguida, lesse o seu livro em gestação poderia facilmente acusá-lo de plágio. Vendo o “trabalho de sua vida ruir”, ele imediatamente relatou o ocorrido a seus amigos mais íntimos, o geólogo Charles Lyell (1797-1875) e o botânico Joseph Dalton Hooker (1817-1911), na esperança de que o impasse pudesse ser equacionado.
Lyell e Hooker, que conheciam versões anteriores do manuscrito de Seleçãonatural, terminaram propondo a tal “solução” de emergência (a respeito da qual, aliás, Wallace não foi previamente consultado): promover a leitura de uma nota conjunta, contendo as linhas gerais da teoria formulada independentemente pelos dois. Além disso, alguns materiais suplementares, redigidos separadamente por cada um deles, também deveriam ser incluídos. E assim foi feito.
Darwinismo ou wallacismo?
Charles Darwin e Alfred Russel Wallace nunca chegaram a ser amigos íntimos, embora tenham mantido contato pelo resto de suas vidas. Ao longo de mais de duas décadas, eles trocaram cartas nas quais discutiam diversos assuntos, como seus diferentes pontos de vista a respeito da seleção sexual – processo algo distinto da seleção natural e cuja importância sempre foi motivo de discórdia entre os dois (para detalhes e comentários adicionais, ver CRONIN 1995).
O curso de suas vidas também tomou rumos diferentes. Darwin, que quase não saía de casa e jamais teve de enfrentar problemas financeiros, continuou escrevendo livros e artigos sobre vários assuntos até o fim da vida. Wallace ainda continuou viajando por mais algum tempo, antes de finalmente se fixar na Inglaterra; ao longo da vida, publicou centenas de artigos e vários livros. Um de seus livros, intitulado justamente Darwinismo(WALLACE 1889), ajudou a selar a vinculação que já naquela época se fazia entre o nome de Darwin (e não o seu) e a teoria da evolução que ambos formularam.
Depois da morte de Darwin, Wallace foi mais de uma vez criticado por outros darwinistas. O naturalista inglês de origem canadense George John Romanes (1848-1894), por exemplo, chegou a falar em “wallacismo”. Mas não havia nada de elogioso nisso; ao contrário: o termo estava sendo usado de modo depreciativo, para ressaltar o que, aos olhos daquele crítico, seriam divergências entre o ponto de vista de Wallace e o darwinismo original. Foi ele também quem cunhou o termo “neodarwinismo”, usado para designar de modo desdenhoso os adeptos das ideias de Wallace e August Weismann (1834-1914), naturalista e médico alemão, autor da chamada “teoria do plasma germinativo. De acordo com Romanes, que agia como se fosse herdeiro e protetor do “verdadeiro” darwinismo, ambos estariam defendendo ideias antidarwinistas. O primeiro, por causa de um suposto exagero na ênfase dada ao papel da seleção natural, uma posição combatida em vida pelo próprio Darwin. (Parte da polêmica que Darwin e Wallace mantiveram ao longo dos anos tinha a ver com a dicotomia seleção natural versus seleção sexual.) O segundo, por conta de suas atitudes críticas aos resquícios lamarckistas que ainda perduravam no darwinismo, o que também iria de encontro a posições lamarckistas defendidas por Darwin (e.g., a sua crença na transmissão de caracteres adquiridos).
O triunfo de Darwin
A publicação de artigos e matérias de divulgação a respeito de questões polêmicas de história da ciência é uma iniciativa saudável e muito bem-vinda. Cabe observar, no entanto, que a matéria da CH referida no início deste artigo reproduz alguns exageros e distorções. No terceiro parágrafo, por exemplo, encontramos o seguinte:
“A história deu os créditos apenas a Charles Darwin (1809-1882). Mas Wallace, de forma lúcida e independente, chegou às mesmas conclusões a que Darwin chegara, e na mesma época.”
Não é bem assim. A rigor, a literatura técnica (e.g., FUTUYMA 1992, FREEMAN & HERRON 2009; mas veja MOODY 1975) e mesmo a boa literatura de divulgação científica (e.g., HARDIN 1969) sempre tiveram o costume de tratar Darwin e Wallace como coautores da teoria da evolução por seleção natural.
No sexto parágrafo, lemos:
“Talvez por isso Darwin – um acadêmico tarimbado e de elevado prestígio na sociedade britânica de então – tenha levado vantagem em relação a Wallace – um sujeito meio ‘alternativo’, que, a duras penas, ganhava a vida vendendo espécimes exóticos para museus londrinos e coleções particulares.”
Um dos problemas aqui é que o termo “acadêmico” induz a erros e mal-entendidos. Afinal, dependendo do contexto, a qualificação pode se aplicar ora a um, ora a outro. É verdade, por exemplo, que Darwin frequentou a universidade, o que Wallace não fez. Poderíamos então descrever o primeiro como “um naturalista com formação acadêmica”. Em compensação, Darwin nunca lecionou, enquanto Wallace ministrou aulas ao longo de um ano. Nesse caso, poderíamos dizer que apenas este último teve um emprego “acadêmico”. Por fim, se o termo é aplicado em alusão a quem pertence a alguma sociedade científica, caberia dizer que ambos poderiam ser chamados de acadêmicos.
De resto, a matéria menciona ainda outros aspectos da vida de Wallace, incluindo suas posições políticas e filosóficas, sem perceber, no entanto, que uma parte do problema (i.e., o “esquecimento” a que ele foi condenado, resultando daí a suposta necessidade de um “resgate”) pode ter se originado justamente ali. A esse respeito, aliás, vale a pena reproduzir aqui o seguinte comentário (HARDIN 1969, p. 41-2; grafia original):
“Finalmente, o lugar de Wallace na galeria da fama, sem dúvida alguma, foi influenciado pela sua conduta em 1858. Publicou um grande número de boas obras de história natural e interessantes livros de viagens; mas, em compensação, vez por outra, defendia ardorosamente a socialização da terra, o espiritualismo e atacava violentamente a vacinação. O sucesso de um homem não se deve tanto à soma das pessoas que estão a seu favor, senão pela diferença deixada após subtrair todos aquêles que êle afrontou de uma forma ou outra. Subtraindo os nobres que antipatizavam com o socialismo de Wallace, os cientistas que zombavam do espiritualismo, os médicos que defendiam a vacinação e os religiosos conservadores chocados pela evolução – veremos que poucos restam para elogiar Wallace. Não é de se admirar que quase nos esquecemos de sua parte na tarefa.”
Outro aspecto a ser ressaltado, este mais no âmbito da sociologia da própria ciência, tem a ver com o modo como os dois naturalistas se relacionavam com outros integrantes da comunidade científica da época (para detalhes e comentários adicionais, ver WRIGHT 1996). Darwin contava com um grupo numeroso de aliados fervorosos, entre os quais figurava o próprio Wallace; este último, por sua vez, ocupava uma posição de coadjuvante mais ou menos solitário.
Embora algumas questões-chave sigam sendo pesquisadas e debatidas – e.g., a famosa carta de Wallace endereçada a Darwin teria chegada nas mãos deste em 18/6/1858, como em geral se diz, ou teria chegado alguns dias antes, como foi recentemente proposto? (ver DAVIES 2012) –, a opinião predominante hoje é a de que a primazia em torno da teoria da evolução por seleção natural caberia a Darwin. O qual, no fim das contas, nada teria feito para sabotar o papel e a importância do trabalho de Wallace (ver, por exemplo, o artigo “Darwin did not cheat Wallace out of his rightful place in history”, de John van Wyhe, publicado no The Guardian, em 12/8/2013).
Coda
Em 1866, Wallace se casou com Annie Mitten (1846-1914). Moraram em diversas cidades, incluindo Londres, Sussex e Dorset. O casal teve três filhos: Herbert Spencer (1867-1874), Violet Isabel (1869-1945) e William Greenell (1871-1951). Ele faleceu em Dorset, para onde o casal havia se mudado em 1889. Na ocasião, eles moravam em uma casa que havia sido idealizada e construída pelo próprio Wallace. Quando faleceu, aos 90 anos de idade, Alfred Russel Wallace – cuja reputação, na época, ia bem além de sua fama como um dos coautores da teoria da evolução por seleção natural – já tinha o seu lugar assegurado na história da ciência.
Referências citadas
** BATES, H. W. 1979 [1863]. Um naturalista no rio Amazonas. Belo Horizonte, Itatiaia e Edusp.
** COX, C. B. 2001. The biogeographic regions reconsidered. Journal of Biogeography 28: 511-23.
** ---------- & MOORE, P. D. 2009 [2005]. Biogeografia: uma abordagem ecológica e evolucionária, 7ª edição. Rio de Janeiro, LTC.
** CRONIN, H. 1995. A formiga e o pavão: Altruísmo e seleção sexual de Darwin até hoje. Campinas, Papirus.
** DAVIES, R. 2012. How Charles Darwin received Wallace’s Ternate paper 15 days earlier than he claimed: a comment on van Wyhe and Rookmaaker (2012). Biological Journal of the Linnean Society 105: 472-7.
** DESMOND, A. & MOORE, J. 1995. Darwin: A vida de um evolucionista atormentado. São Paulo, Geração Editorial.
** FREEMAN, S. & HERRON, J. C. 2009. Análise evolutiva, 4ª edição. Porte Alegre, Artmed.
** FUTUYMA, D. 1992. Biologia evolutiva, 2ª edição. Ribeirão Preto, Sociedade Brasileira de Genética e CNPq.
** HARDIN, G. 1969. A natureza e o destino do homem. São Paulo, Nacional.
** MOODY, P. A. 1975 [1970]. Introdução à evolução, 3ª edição. Rio de Janeiro, LTC e Editora da UnB.
** WALLACE, A. R. 1876. The geographic distribution of animals. Londres, Harper.
** ----------. 1979 [1889]. Viagens pelos rios Amazonas e Negro, 2ª edição. Belo Horizonte, Itatiaia e Edusp.
** ----------. 1889. Darwinism: An exposition of the theory of natural selection, with some of its applications. Londres, Macmillan.
** WRIGHT, R. 1996. O animal moral. Rio de Janeiro, Campus.
***
Felipe A. P. L. Costa é biólogo e escritor, autor, entre outros, de Ecologia, evolução & o valor das pequenas coisas (2003)